
 

  

Abstract—This paper gives an overview of the procedure of 
design of selective linear-phase IIR digital filters. Synthesis of 
minimum-phase transfer functions will be described. Two 
approximation criteria will be implemented for constant group 
delay approximation: the maximally flat and the equi-ripple. The 
synthesis in the s-domain will be performed in two steps. First, a 
polynomial function exhibiting linear phase will be synthesized 
and then transmission zeros located on the imaginary will be 
added. The IIR filter will be obtained by bilinear transform. To 
avoid stability problems and, in the same time, problems related 
to the signal dynamics within the filter, parallel implementation 
of the IIR filter will be used. Two examples will be given 
exemplifying the implementation of the two approximation 
criteria used. 

 
Index Terms—IIR filters, linear phase, selective digital filters.  
 

I. INTRODUCTION 
THE linear phase property of digital filters is usually attri-

buted to the FIR filters [1]. That, however, is achieved by 
doubling the number of coefficients in the filter function what 
has, as a consequence, doubling of the hardware needed for 
realization. In such a solution the phase linearity is extended 
over the stop-band which is not necessary and reveals the no-
tion of unnecessary redundancy. In addition, there are severe 
restrictions to the shape of the amplitude characteristic when 
using FIR filters. Here we offer a procedure for selective line-
ar phase IIR filter design where both, the amplitude and phase 
characteristics, are under full control of the designer. A design 
procedure, that starts in the s-domain and after bilinear 
transformation produces the filter coefficients, will be descri-
bed. The procedure is alternative to the one described (For 
maximally-flat delay, only) in [2, 3] where the whole process 
is performed in the z-domain. Parallel implementation of the 
IIR filter will be used. The examples demonstrating the design 
process will exhibit maximally-flat and equi-ripple approxi-
mation of the group delay while the selectivity of the filter 
will be achieved by inserting imaginary-axis zeros which, in 
parallel realization, does not affect the hardware complexity. 
The final results will be expressed as sixteen-bit normalized 
two's complements. 

The paper is organized as follows. First, in the second 
paragraph, we describe the constant group delay of low-pass 
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filters in the s-domain. Then, we introduce the algorithm of 
transmission zeros inserting at the imaginary axis. The s-
domain is then abandoned and in the fourth paragraph we 
describe the use of the bilinear transform for synthesis of IIR 
filters with parallel implementation. Finally, in the fifth 
paragraph we will report two design examples illustrating the 
method and giving insight into the properties of the functions 
obtained.  

II. CONSTANT GROUP DELAY APPROXIMATION 
Lack of liner phase (i.e. constant group delay) is the most 

commonly stated fact in favor to FIR filters when compared to 
IIR one. Accordingly, group delay compensation is inevitable 
with IIR filters whenever linear phase is sought [4, 5]. 
However, the problem of constant group delay approximation 
of low-pass analog filters is already solved. In [6, 7, 8] one 
may find procedures to achieve both. That is why we will not 
go for the algorithms here. Instead we will demonstrate the 
results. 

To synthesize a low-pass filter exhibiting equi-ripple appro-
ximation of the group delay in the s-domain, we wrote a prog-
ram in C. Results obtained by implementation of that program 
are illustrated in Fig. 1 for an eight order polynomial low-pass 
filter. In this special case an approximation error of ±1% was 
allowed. Fig. 2 depicts the group delay of this filter only. 

 
Fig. 1. Attenuation and group delay response of an eight order polynomial 
filter approximating constant group delay in equi-ripple manner 
 

Table I summarizes data about selectivity of all filters 
presented in this paper.  Since all functions are normalized so 
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that at ω=1 rad/s to have an attenuation of 3 dB, the main 
information about the selectivity is the width of the transition 
region defined for some stop-band attenuation level. Here we 
have chosen the value of 40 dB as the minimum allowable 
stop-band attenuation.  

 

TABLE I. TRANSITION REGION WIDTH (NORMALIZED, IN RAD/S) 

Type of 
 function→ Polynomial Rational Reduction 

(%) Type of  
approximation↓ 
Maximally flat 2.342017 1.817169 28.894 
Equi-ripple 2.126709 1.797034 18.345 

  
 

 
Fig. 2. Group delay response of an eight order polynomial filter approxi-
mating constant group delay in equi-ripple manner 

 
As an alternative a maximally flat approximation of the 

group delay was performed using another program. Bessel 
polynomials were used as first introduced in [9]. The 
properties of the resulting polynomial filter in the s-domain 
are graphically depicted in Fig. 3, while Table I expresses the 
selectivity property of the solution.   

 

 
Fig. 3. Attenuation and group delay response of an eight order polynomial 
filter approximating constant group delay in maximally flat manner 
 

As can be seen from Table I, the equi-ripple solution 
exhibits slightly higher selectivity. That comes from the fact 
that less restrictive requirements were imposed for the group 
delay approximation. Namely, if zero valued error was 
sought, the equi-ripple solution would be reduced to the 
maximally flat one. 

III. TRANSMISSION ZEROS INSERTION 
 
The algorithm for insertion of finite transmission zeros at 

the imaginary axis of the complex frequency plane is already 
known [10]. It will be not repeated here. To make the 
proceedings clear, however, some definitions will be given. 

The transfer function of an all-pole analog filter may be 
expressed as follows 
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where iiip ωjσ ⋅+= , i=1,2,...,m, are the complex poles of 
the transfer function, m is its order, and s is the complex 
frequency. This function has all zeros at infinity. 

When zeros at the imaginary axis are introduced the group 
delay characteristic of the filter remains unchanged apart for 
the renormalization necessary to be done after the 
approximation process is finished. The new transfer function 
will have the form 
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where ωk, k=1,2,..,n/2 is the abscissa of the zero at the 
imaginary axis, and n is an even number. n<m. 
 Note, in both formulae the gain at the origin is reduced to 
unity. 
 After insertion of transmission zeros and proper renormali-
zation of the amplitude characteristic is performed the follo-
wing results were obtained. 
 

 
Fig 4. Attenuation and group delay response of the rational transfer function 
approximating constant group delay in equi-ripple manner. 



 

Fig. 4. represents the attenuation and group delay response 
of the new transfer function approximating constant group 
delay in equi-ripple manner. Minimum stop-band attenuation 
of 40 dB was required. n=6 was used. The final positions of 
the zeros and poles of this filter are given in Table II.  
 
TABLE II. RATIONAL FUNCTION APPROXIMATING CONSTANT GROUP DELAY IN 

EQUI-RIPPLE MANNER. N=6, M=8 
 

 Real part Imaginary part 

Zeros 
0.000000 ±2.917597 
0.000000 ±3.738559 
0.000000 ±5.046967 

Poles 

-1.177311 ±0.681299 
-1.152160 ±2.029670 
-1.077362 ±3.327213 
-0.837877 ±4.516940 

 
Similarly, Fig. 5. represents the attenuation and group delay 

response of the new transfer function approximating constant 
group delay in maximally flat manner. Minimum stop-band 
attenuation of 40 dB was required. n=6 was used. The final 
positions of the zeros and poles of this filter are given in Table 
III.  

 
Fig 4. Attenuation and group delay response of the rational transfer function 
approximating constant group delay in maximally flat manner. 

 
TABLE III. RATIONAL FUNCTION APPROXIMATING CONSTANT GROUP DELAY 

IN MAXIMALLY FLAT MANNER. N=6, M=8 
 

 Real part Imaginary part 

zeros 
0.000000 ±2.939935 
0.000000 ±3.834581 
0.000000 ±6.096760 

poles 

-2.902836 ±0.450715 
-2.703850 ±1.359070 
-1.474817 ±3.300775 
-2.269270 ±2.293247 

 
By inspection of Table I, one may come to a conclusion 

that by introduction of finite transmission zeros the transition 

region width was reduced for approximately 30% for the 
maximally flat case, and for approximately 18% for the equi-
ripple case. That, however, brings both solutions very near to 
each other. The equi-ripple case has a very small advantage 
due to the larger error of the group delay approximation 
allowed. 
 

IV. TRANSFORMATION AND PROPERTIES OF THE NEW IIR 
FILTERS 

 
The IIR filter was obtained by bilinear s-to-z transform of 

the analog prototypes. To preserve stability and reduce the ef-
fects of limited number of significant figures when represen-
ting the coefficients of the digital filter, the parallel structure 
of the IIR realization was adopted. It is depicted in Fig. 5. 

 
Fig. 5. Parallel realization of an odd-order IIR digital filter 

Following is the procedure of obtaining the coefficients of 
Fig.5.  

The original transfer function should be presented as a sum 
of partial fractions (of first (for n odd) and second order 
terms) as follows  
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where index e is used for the complex pair of poles while o 



 

means simple real pole. In (9) we used  
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with ,oroG =  and opoa −= . In the above pi stands for the 

ith pole, ri for the residue in the ith pole, "re" for "real part" 
and "im" for "imaginary part".  

Implementing bilinear transform for the second order cell 
one gets (With reference to Fig. 5) 
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while for the first order cell one has (With reference to Fig. 5.) 
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In the next we will show the results of implementation of 
this procedure to the two example analog filters. Sampling 
frequency hundred times larger than the cut-off frequency of 
the filter was used in the bilinear transform.  

 
Fig. 6. Attenuation characteristics of the analog and the digital filter 
approximating in equi-ripple manner 

 
Fig. 7. Group delay characteristics of the analog and the digital filter 
approximating in equi-ripple manner 

TABLE IV GROUP DELAY ERROR AS A CONSEQUENCE OF THE S-TO-Z 
TRANSFORMATION FOR THE FILTERS APROXIMATING IN EQUI-RIPPLE MANNER 
 

Group delay error @ ω = 1 value unit 
Δ = |τG(analog) – τG(digital)|    0.0019530953 sec 
Δr = 100⋅[Δ/τG(analog) ] 0.0990374792 % 

 
TABLE V COEFFICIENTS OF Z – DOMAIN PARALLEL SECTIONS 

 
i c0 c1 c2 
1 -0.05786132812500 +0.00415039062500 +0.06195068359375 
2 +0.06500244140625 +0.00085449218750 -0.06414794921875 
3 -0.00384521484375 -0.00280761718750 +0.00109863281250 
4 -0.00250244140625 -0.00042724609375 +0.00207519531250 

 d1 d2 
1 -1.85571289062500 +0.86248779296875 
2 -1.84570312500000 +0.86566162109375 
3 -1.82989501953125 +0.87463378906250 
4 -1.82427978515625 +0.90191650390625 

 



 

TABLE VI Z – DOMAIN ZEROS/POLE LOCATION OBTAINED AS THE ROOTS OF 
THE POLYNOMIALS GIVEN IN TABLE V 
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+1.0712206676 0.0 +0.9278564453 +0.0396258736 
-0.9994907098 0.0 +0.9278564453 -0.0396258736 
-1.0000000000 0.0 +0.9228515625 +0.1183495445 
+0.9868544601 0.0 +0.9228515625 -0.1183495445 
-1.0123793176 0.0 +0.9149475098 +0.1936616726 
+0.2822205874 0.0 +0.9149475098 -0.1936616726 
-1.0000000000 0.0 +0.9121398926 +0.2644188349 
+0.8292682927 0.0 +0.9121398926 -0.2644188349 
 
The example related to the filter approximating group delay 

in equi-ripple manner will be discussed first.  
Fig. 6 depicts the attenuation characteristics of both the 

original analog and the IIR digital filter obtained after 
transformation. As can be seen, no distortions introduced after 
the transformation may be seen. 

The group delay characteristics of both analog and IIR 
digital filter are depicted in Fig. 7. Small distortion may be 
noticed. It is numerically highlighted in Table IV. One may 
find out from this table that the distortion of the group delay 
due to the bilinear transform is smaller than 1% over all pass-
band. 

For convenience, Table V contains the values of the 
coefficients of the parallel cells as defend with (6a) and Fig. 5. 
The corresponding zeros and poles of the cells are given in 
Table VI. 

 
Fig. 8. Attenuation characteristics of the analog and the digital filter 
approximating in maximally flat manner 

The second example is related to the filter approximating 
group delay in maximally flat manner.  

Fig. 8 depicts the attenuation characteristics of both the 
original analog and the IIR digital filter obtained after 
transformation.  

 
Fig. 9. Group delay characteristics of the analog and the digital filter 
approximating in maximally flat manner 

TABLE VII GROUP DELAY ERROR AS A CONSEQUENCE OF THE S-TO-Z 
TRANSFORMATION FOR THE FILTERS APPROXIMATING IN MAXIMALLY 

FLAT MANNER 
 

Group delay error @ ω = 1 value unit 
Δ = |τG(analog) – τG(digital)| 0.0018991890 sec 
Δr = 100⋅[Δ/τG(analog) ] 0.0986604537 % 

 
TABLE VIII COEFFICIENTS OF Z – DOMAIN PARALLEL SECTIONS FOR THE IIR 

FILTER APPROXIMATING IN MAXIMALLY FLAT MANNER 
 

i c0 c1 c2 
1 -0.00933837890625 +0.22723388671875 +0.23663330078125 
2 +0.05548095703125 -0.31170654296875 -0.36718750000000 
3 -0.05621337890625 +0.09002685546875 +0.14624023437500 
4 +0.01068115234375 -0.00402832031250 -0.01464843750000 

 d1 d2 
1 -1.66510009765625 +0.69366455078125 
2 -1.68115234375000 +0.71179199218750 
3 -1.71697998046875 +0.75262451171875 
4 -1.78570556640625 +0.83233642578125 

 
TABLE IX Z – DOMAIN ZEROS/POLE LOCATION OBTAINED AS THE ROOTS OF 

THE POLYNOMIALS GIVEN IN TABLE VIII 
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+25.3335815315 0.0 +0.8325500488 +0.0229121579 
 -1.0002481982 0.0 +0.8325500488 -0.0229121579 
 +6.6182618262 0.0 +0.8405761719 +0.0722751096 
 -1.0000000000 0.0 +0.8405761719 -0.0722751096 
 +2.6015200869 0.0 +0.8584899902 +0.1249777916 
 -1.0000000000 0.0 +0.8584899902 -0.1249777916 
 +1.3747365752 0.0 +0.8928527832 +0.1874842215 
 -0.9975937181 0.0 +0.8928527832 -0.1874842215 



 

As can be seen, no distortions introduced after the 
transformation may be seen. 

The group delay characteristics of both analog and IIR 
digital filter are depicted in Fig. 9. Small distortion may be 
noticed. It is numerically highlighted in Table VII. One may 
find out from this table that the distortion of the group delay 
due to the bilinear transform is smaller than 1% over all pass-
band. 

For convenience, Table VIII contains the values of the 
coefficients of the parallel cells as defend with (6a) and Fig. 5. 
The corresponding zeros and poles of the cells are given in 
Table IX. 

Assuming direct hardware implementation i.e. each element 
of the architecture illustrated in Fig. 5 realized as separate, 
two port component, one can easily determine the amount of 
hardware required for filter realization. Table X summarizes 
hardware estimation for both, equi-ripple and maximally flat, 
cases. 
TABLE X AMOUNT OF HARDWARE REQUIRED FOR FILTERS EQUI-RIPPLE AND 

MAXIMALLY FLAT FILTERS 
 

Component number 
Adders 19 
Multipliers 20 
Registers (Delay Elements) 8 

 

V. CONCLUSION 
An overview of the procedure of design of selective linear-

phase IIR digital filters was described and exemplified. 
Synthesis of minimum-phase transfer functions was 
considered. Two approximation criteria have being 
implemented for constant group delay approximation: the 
maximally flat and the equi-ripple. The synthesis in the s-
domain was performed in two steps. First, a polynomial 
function exhibiting linear phase was synthesized and then 
transmission zeros located on the imaginary axis were added. 
The IIR digital filter was obtained by bilinear transform. To 

avoid stability problems and, in the same time, problems 
related to the signal dynamics within the filter, parallel 
implementation of the IIR filter was adopted. Two examples 
were be given exemplifying the implementation of the two 
approximation criteria used. 
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